Sound

Section Study Guide

Teacher Notes and Answers

SOUND WAVES
1. 336 m/s
2. 1030 m
3. a. 3.00 cm
 b. 1.50 cm
 c. 3.51 s; 0.234 s
 d. 1.14×10^4 Hz (no Doppler effect because the train was stationary)
 e. pitch decrease; same; increase

SOUND INTENSITY AND RESONANCE
1. a. 9.95×10^{-3} to 2.49×10^{-3} W/m2
 b. 6.22×10^{-2} to 2.76×10^{-4} W/m2
 c. 1.59×10^{-3} W/m2, about 70
2. a. 1.00×10^{-2} W/m2
 b. 3.14 W
 c. 5000 m

HARMONICS
1. a. 462 m/s
 b. Student diagrams should show antinodes, nodes at both ends; first has one antinode, second has two, third has three.
 c. 69.0 cm
2. a. 880 Hz, 1320 Hz, 1760 Hz
 b. Check student graphs for accuracy. Wavelength of first harmonic should be two wavelengths of second harmonic, three wavelengths of third harmonic. The second and third harmonics should have half the amplitude. The resultant will be a wave with a large maximum, a smaller peak, a small minimum, and a large minimum.
Sound

Concept Review

Sound Waves

1. In an experiment for measuring the speed of sound, a gun was shot 715 m away from the observer. It was heard 2.13 seconds after the flash was seen. What was the speed of sound in air at that time?

2. Sound travels at 1530 m/s in sea water. A signal sent down from a ship is reflected at the bottom of the ocean and returns 1.35 s later. Assuming the speed of sound was not affected by changes in the water, how deep was the ocean at that point?

3. A train at rest blows a whistle to alert passengers that it is about to depart from a subway station. The pitch of this whistle is 1.14×10^4 Hz. The speed of sound in the air in that subway tunnel is 342 m/s. The speed of sound in iron is 5130 m/s.
 a. What is the wavelength of that sound in the air?

 b. What is the distance between consecutive areas of compression and of rarefaction in the spherical sound waves spreading from the whistle in the air?

 c. Assuming that the sound was loud enough to be heard from the end of the 1200 m long tunnel, when was it heard through air? through the rails?

 d. What was the apparent frequency of the sound waves that reached the end of the tunnel?

 e. As the train left the station, did the frequency appear to change for a listener on the platform? inside the train? at the other end of the tunnel?

Sound

Sound Intensity and Resonance
Refer to the following table to answer the following questions.

<table>
<thead>
<tr>
<th>Intensity (W/m²)</th>
<th>Decibel level (dB)</th>
<th>Intensity (W/m²)</th>
<th>Decibel level (dB)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.0 × 10⁻⁹</td>
<td>30</td>
<td>1.0 × 10⁻⁵</td>
<td>70</td>
</tr>
<tr>
<td>1.0 × 10⁻⁸</td>
<td>40</td>
<td>1.0 × 10⁻⁴</td>
<td>80</td>
</tr>
<tr>
<td>1.0 × 10⁻⁷</td>
<td>50</td>
<td>1.0 × 10⁻³</td>
<td>90</td>
</tr>
<tr>
<td>1.0 × 10⁻⁶</td>
<td>60</td>
<td>1.0 × 10⁻²</td>
<td>100</td>
</tr>
</tbody>
</table>

1. While practicing his instrument at home, a young drummer produces sounds with 0.5 W of power. Assume the sound waves spread spherically, with no absorption in the medium.
 a. What is the intensity of the sound waves that reach the walls of his room 2.00 to 4.00 m from the drum?

 b. What is the intensity of the sound waves that reach the family room, 8.00 to 12.0 m from the drum?

 c. What is the intensity and approximate decibel level of the sound waves that reach the neighbors’ home 50.0 m away?

2. The sound level 5.00 meters away from a jackhammer is exactly 100 dB.
 a. What is the intensity of the sound at that point?

 b. What is the power of the sound from the jackhammer?

 c. At what distance from the jackhammer will the noise intensity decrease to 1.00 × 10⁻⁸ W/m²?

Harmonics

1. A 52.0 cm long guitar string has a fundamental frequency of 444 Hz.
 a. What is the speed of sound in the string according to these data?

 b. In the space below, draw the standing wave pattern for the first, the second, and the third harmonics, showing the nodes and the antinodes on the string.

 c. What should be the string’s length in order to produce a fundamental note of 333 Hz?

2. The first harmonic frequency of a violin string is 440 Hz.
 a. Find the next harmonic frequencies (overtones) of this string.

 b. The intensities of the second and third harmonics are about half that of the fundamental one. Sketch a graph of each wave and a graph of their combination to show the resultant waveform for this violin string.